ESTIMATING THE TIME OF MOTION OF CERTAIN DYNAMICAL SYSTEMS \dagger

A. P. BLINOV
Moscow
(Received 15 December 2000)

Developing results obtained earlier [1,2], a method of changing Lyapunov's function with a negative-sign derivative into a Lyapunov function with a negative-definite derivative [1] is applied to natural mechanical systems with dissipation when there are no gyroscopic forces. The transition time is estimated. © 2002 Elsevier Science Ltd. All rights reserved.

1. CHANGING LYAPUNOV'S FUNCTION FOR ESTIMATING THE TRANSITION TIME

For the system of differential equations of disturbed motion

$$
\begin{equation*}
\dot{x}_{i}=f_{i}(x), x \in R^{n}, f_{i}(x) \in C^{\prime}(G), i=1,2, \ldots, n \tag{1.1}
\end{equation*}
$$

with an asymptotically stable equilibrium position $x=0 \in G \subset R^{n}$, for which a positive-definite Lyapunov function $V_{0}(x)$ is known in the region G, with a non-positive time derivative by virtue of (1.1), which vanishes on the manifold $M \subset G$, a new function was constructed in [1]

$$
V(x)=V_{0}(x)+V_{*}(x)
$$

where

$$
\begin{aligned}
& V_{*}(x)=\sum_{k=1}^{n} \lambda_{k} \Phi_{k}(x), \quad \Phi_{k}=-\int_{0}^{x_{k}} f_{k}^{0}\left(x_{m+1}, \ldots, x_{n}\right) d x_{k} \\
& f_{k}^{0}\left(x_{m+1}, \ldots, x_{n}\right)=f_{k}\left(x_{1}^{0}\left(x_{m+1}, \ldots, x_{n}\right), \ldots, x_{n}\right)
\end{aligned}
$$

x_{m+1}, \ldots, x_{n} are independent variables in terms of which the remaining variables $x_{1}, x_{2}, \ldots, x_{m}$ on M are expressed in a unique and differentiable from: $x_{j}=x_{j}^{0}\left(x_{m+1}, \ldots, x_{n}\right) ; x_{j}^{0}(0)=0(j=1, \ldots, m)$ and λ_{k} are certain non-negative numbers.

From a consideration of the time derivative of V. by virtue of system (1.1)

$$
\begin{equation*}
\dot{V}_{*}=-\sum_{i=1}^{m} \lambda_{i} f_{i} f_{i}^{0}+\sum_{k=m+1}^{n} f_{k} \sum_{i=1}^{m} \lambda_{i} \frac{\partial \Phi_{i}}{\partial x_{k}}+\sum_{i, k=m+1}^{n} \lambda_{k} f_{i} \frac{\partial \Phi_{k}}{\partial x_{i}} \tag{1.2}
\end{equation*}
$$

two cases of the selection of λ_{i} in which the problem of changing Lyapunov's function is solved were distinguished [1].

We will dwell on the case when

$$
\begin{equation*}
f_{m+1}(x)=f_{m+2}(x)=\ldots f_{n}(x)=0 \text { on } M \tag{1.3}
\end{equation*}
$$

This case arises in mechanical systems with energy dissipation when there are no gyroscopic forces. In fact, the equations of motion

$$
\frac{d}{d t}\left(\frac{\partial L}{d \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=-\frac{\partial R}{d \dot{q}_{i}}
$$

where

$$
L=T-U, \quad R=\frac{1}{2} \sum_{i, k=1}^{n} \mu_{i k} \dot{q}_{i} \dot{q}_{k}, \quad T=T_{2}+T_{0}, T_{2}=\frac{1}{2} \sum_{i, j}^{n} a_{i j} \dot{q}_{i} \dot{q}_{j}
$$

(L is the Lagrange function, R is the Rayleigh function, $\mu_{i k}$ are the dissipation coefficients, and $T_{0}, a_{i j}$ and U are functions of the generalized coordinates q_{1}, \ldots, q_{n}), after introducing. The Hamilton variables

$$
\begin{equation*}
p_{k}=\partial L / \partial \dot{q}_{k} \tag{1.4}
\end{equation*}
$$

are transformed into

$$
\begin{equation*}
\dot{p}_{k}=\partial L / \partial q_{k}-\partial R / \partial \dot{q}_{k} \tag{1.5}
\end{equation*}
$$

Taking into account that

$$
L=\sum_{i} p_{i} \dot{q}_{i}-H
$$

where $H=T+U$ is the Hamilton function, Eqs (1.5) can be given a different form

$$
\begin{equation*}
\dot{p}_{k}=-\partial H / \partial q_{k}-\partial R / \partial \dot{q}_{k} \quad \text { or } \quad \dot{p}_{k}=\sum_{i, j} A_{i j}^{k} p_{i} p_{j}+\sum_{i} A_{i}^{k} p_{i}+A_{k} \tag{1.6}
\end{equation*}
$$

where $A_{i j}^{k}, A_{i}^{k}$ and A_{k} are functions of the generalized coordinates, and here A_{i}^{k} are linear forms in $\mu_{k j}$. These equations, together with the equations

$$
\begin{equation*}
\dot{q}_{k}=\sum_{i} B_{i}^{k} p_{i} ; B_{i}^{k}=B_{i}^{k}(q) \tag{1.7}
\end{equation*}
$$

obtained from expressions (1.4), form a closed system of equations.
Suppose the state of equilibrium

$$
q_{1}=\ldots=q_{n}=0, \quad p_{1}=\ldots=p_{n}=0
$$

is asymptotically stable, G is the region of attraction and $V_{0}=T+U$ is Lyapunov's function. Then, expression (1.2) for $\dot{V}_{\text {, }}$ will have the form of the case considered here if x is thought of as a vector with the coordinates $p_{1}, \ldots, p_{n}, q_{1}, \ldots q_{n}$, and if account is taken of the fact that the manifold M is described by the system of equations $p_{1}=\ldots=p_{n}=0$. Here

$$
f_{n+1}(x)=f_{n+2}(x)=\ldots=f_{2 n}(x)=0 \text { on } M
$$

In order for \dot{V}. to be negative on $M\{0\}$, it is sufficient to put $\lambda_{n+1}=\ldots=\lambda_{2 n}=0$ for any positive $\lambda_{1}, \ldots, \lambda_{n}$.
We will now consider the more general case (1.3) of system (1.1). Let G_{12} be the closure of the part of region G contained between the surfaces $V_{0}=c_{1}$ and $V_{0}=c_{2}, c_{1}>c_{2}>0$ and $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{m}=\lambda$.

By virtue of the continuity of the functions $V_{0}, \mathscr{V}_{0}, V_{\text {a }}$, and \dot{V}. in the region G_{12}, a fairly small number λ, for which the sum $\dot{V}_{0}+\dot{V}_{\text {. }}$, will be positive in G_{12}, will be found. In this case it may turn out that the sum $\left[-\left(\dot{V}_{0}+\dot{V}_{*}\right)\right]$ will also be positive in G_{12}. Having determined $\min \left(-\dot{V}_{0}-\dot{V}_{+}\right)=v$ in G_{12}, it is possible to give (see, for example, [3]) an upper limit of the time of motion of the system in G_{12}, i.e. to estimate the transition time. However, if the sum $\left[-\left(\dot{V}_{0}\right.\right.$ $\left.\left.+\dot{V}_{*}\right)\right]$ with the selected λ is not positive over the entire region G_{12}, then a certain neighbourhood of the manifold M should exist in which this sum is positive. Then, when λ is reduced further, this ncighbourhood will expand and, at a certain value $\lambda=\lambda_{*}$, will cover the entire region G_{12}, i.e. estimation of the transition time is always possible.

By varying the values of $\lambda_{1}, \ldots, \lambda_{m}$ and dividing the region G_{12} into subregions by specifying the numbers c_{3}, c_{4}, $\ldots, c_{k}\left(c_{2}<c_{3}<c_{4}<\ldots<c_{k}<c_{1}\right)$, the estimate of the transition time can be improved.

Along with this estimate, a rougher estimate may be useful. This is based on the inequality (in all cases below, the operations min and max are conducted over the region G_{12}; summation is carried out from $k=1$ to $k=m$)

$$
\min \left(V_{0}+V_{*}\right)=\min \left(V_{0}-\lambda \Sigma \Phi_{k}\right) \geqslant c_{2}-\lambda \max \left|\Sigma \Phi_{k}\right|>0
$$

and on replacing the check of the positiveness of $\left(-\mathrm{V}_{0}-\dot{V}_{*}\right)$ in the region G_{12} with the chosen value

$$
\lambda=\lambda_{*}, \lambda_{*}=c_{2} / \max \left|\Sigma \Phi_{k}\right|
$$

with a check of the positiveness of ($-\dot{V}$) in the ε-neighbourhood of the set M (or, more precisely, in the set $M_{\varepsilon}=\left(x \in G_{12} \mid d(x, M) \leqslant \varepsilon\right)$, where ε is a small positive number, and $d(x, M)$ is the distance between points $x \in$ G_{12} and the manifold M) and with a check of the positiveness of $\left(-\dot{V}_{0}-\dot{V}_{*}-\alpha\right)$ in $G_{12} \backslash M_{\varepsilon}$, where $\alpha=\min \left(-\dot{V}_{*}\right)$ on M_{ε}.

For a fairly small fixed value of ε as $\lambda \rightarrow 0$ it follows that $\alpha \rightarrow 0$ and an increase in min ($-\dot{V}_{0}-\dot{V}_{\dot{-}}-\alpha$) in $G_{12} \backslash M_{\varepsilon}$ to the value $\beta>0, \beta=\min \left(-V_{0}\right)$. Therefore, $\lambda=\lambda_{* 0} \leq \lambda$. will be found, for which $\alpha=\alpha_{0}>0$ and the
quantity $\min \left(-\dot{V}_{0}-\dot{V}_{*}-\alpha_{0}\right)$ will become non-negative. However, the value of α_{0} can be taken as the lower limit of the values of $\left(-V_{0}-\dot{V}_{\text {. }}\right)$ in the region G_{12} and used to estimate the transition time.

2. EXAMPLE: THE MOTION OF A SYSTEM OF TWO SERIES-CONNECTED PENDULUMS IN A RESISTING MEDIUM

Assuming that the resistance of the medium is proportional to the velocity of motion of each pendulum, expressions were obtained in [4] for the resistance of the medium to the motion of two series-connected pendulums

$$
\begin{aligned}
& R_{1}=\mu\left[\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\varphi}_{1}+m_{2} l_{1} l_{2} \cos \left(\varphi_{2}-\varphi_{1}\right) \dot{\varphi}_{2}\right] \\
& R_{2}=\mu\left[m_{2} l_{2}^{2} \dot{\varphi}_{2}+m_{2} l_{1} l_{2} \cos \left(\varphi_{2}-\varphi_{1}\right) \dot{\varphi}_{1}\right]
\end{aligned}
$$

where μ is a positive constant, and m_{k}, l_{k} and φ_{k} are the mass, length and angle of deviation of the pendulums from the vertical ($k=1,2$).

The equations of motion of the system and its kinetic and potential energy have the form

$$
\begin{align*}
& \dot{y}_{1}=-\mu y_{1}-\omega k_{1}+\psi_{1}, \quad \dot{\varphi}_{1}=y_{1} \\
& \dot{y}_{2}=-\mu y_{2}-A \omega k_{2}+\psi_{2}, \quad \dot{\varphi}_{2}=y_{2} \tag{2.1}\\
& T=\frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\varphi}_{1}^{2}+\frac{1}{2} m_{2} l_{2} \dot{\varphi}_{2}^{2}+m_{2} l_{1} l_{2} \cos \left(\varphi_{2}-\varphi_{1}\right) \dot{\varphi}_{1} \dot{\varphi}_{2} \\
& U=\left(m_{1}+m_{2}\right) g l_{1}\left(1-\cos \varphi_{1}\right)+m_{2} g l_{2}\left(1-\cos \varphi_{2}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \omega=\frac{1}{B\left[A-b \cos ^{2}\left(\varphi_{2}-\varphi_{1}\right)\right]}, \quad A=\frac{\left(m_{1}+m_{2}\right) l_{1}}{m_{2} l_{2}}, \quad B=m_{2} l_{2}, \quad b=\frac{l_{1}}{l_{2}} \\
& k_{1}=\left(m_{1}+m_{2}\right) g \sin \varphi_{1}, \quad k_{2}=m_{2} g \sin \varphi_{2} \\
& \psi_{1}=\omega \cos \left(\varphi_{2}-\varphi_{1}\right) k_{2}+B \omega \sin \left(\varphi_{2}-\varphi_{1}\right)\left[b \cos \left(\varphi_{2}-\varphi_{1}\right) y_{1}^{2}+y_{2}^{2}\right] \\
& \Psi_{2}=b \omega \cos \left(\varphi_{2}-\varphi_{1}\right) k_{1}-B b \sin \left(\varphi_{2}-\varphi_{1}\right)\left[A y_{1}^{2}+\cos \left(\varphi_{2}-\varphi_{1}\right) y_{2}^{2}\right]
\end{aligned}
$$

and g is the acceleration due to gravity.
We will take the following as Lyapunov's function [4]:

$$
\begin{equation*}
V_{0}=A B b y_{1}^{2}+B y_{2}^{2}+2 B b y_{1} y_{2} \cos \left(\varphi_{2}-\varphi_{1}\right)+2 b \int_{0}^{\varphi_{1}} k_{1}(x) d x+2 b \int_{0}^{\varphi_{2}} k_{2}(x) d x \tag{2.2}
\end{equation*}
$$

Its time derivative, by virtue of system (2.1), is

$$
\dot{V}_{0}=-2 \mu B\left(b\left[A-b \cos ^{2}\left(\varphi_{2}-\varphi_{1}\right)\right] y_{1}^{2}+\left[b y_{1} \cos \left(\varphi_{2}-\varphi_{1}\right)+y_{2}\right]^{2}\right\}<0
$$

for $y_{1} \neq 0$ and $y_{2} \neq 0$. Thus, the manifold M is represented by the system of equations

$$
y_{1}=0, \quad y_{2}=0
$$

and

$$
\begin{aligned}
& f_{1}^{0}=\omega\left[-k_{1}+\cos \left(\varphi_{2}-\varphi_{1}\right) k_{2}\right], \quad f_{2}^{0}=\omega\left[-A k_{2}+b \cos \left(\varphi_{2}-\varphi_{1}\right) k_{1}\right] \\
& f_{3}^{0} \equiv 0, \quad f_{4}^{0} \equiv 0, \quad \Phi_{1}=-f_{1}^{0} y_{1}, \quad \Phi_{2}=-f_{2}^{0} y_{2} \\
& \dot{V}_{*}=-\lambda\left(f_{1} f_{1}^{0}+f_{2} f_{2}^{0}+f_{3} f_{1}^{0}+f_{4} f_{2}^{0}\right)
\end{aligned}
$$

According to (1.8)

$$
\lambda_{*}=c_{2} / \max \left|f_{1}^{0} y_{1}+f_{2}^{0} y_{2}\right|
$$

where

$$
\begin{aligned}
& \left|f_{1}^{0} y_{1}+f_{2}^{0} y_{2}\right|<\frac{g}{l_{1} m_{1}}\left[\left(m_{1}+m_{2}\right)(1+b)+m_{2}(l+A)\right] \max \left(\left|y_{1}, y_{2}\right|\right) \\
& \max \left(\left|y_{1}\right|\left|\left|y_{2}\right|\right) \leqslant l\right.
\end{aligned}
$$

and l is the major semiaxis of the ellipse $A b y_{1}^{2}-y_{2}^{2}-2 b y_{1} y_{2}=c_{1}$.
We will check the positiveness of $\left(-\dot{V}_{*}\right)$ in M_{ε}, assuming ε to be a fairly small number. From the expression for \dot{V}_{*} it can be seen that the sign of \dot{V}. in \dot{M}_{ε} may depend only on the choice of ε. When $\varepsilon \rightarrow 0$ we have $y_{1} \rightarrow 0$ and $y_{2} \rightarrow 0$. For a fairly small value $\varepsilon=\varepsilon_{*}$, we will have ($-\dot{V}_{*}$) $\geqslant \alpha>0$ in M_{ε}, and it is possible to determine α_{0}.

3. THE MOTION OF A PARTICLE IN A CENTRAL FIELD OF FORCES TAKING THE RESISTANCE OF THE MEDIUM INTO ACCOUNT

Consider a particle of unit mass moving in a medium in which the friction depends on the velocity v in the plane $O x y$ with a centre of attraction at the point O. Let $T=v^{2} / 2$ be the kinetic energy, where $v=\sqrt{\dot{x}^{2}+y^{2}}$.

The equations of motion of the particle have the form (the prime denotes a derivative with respect to r)

$$
\begin{align*}
& \dot{p}_{1}=-\frac{x}{r} U^{\prime}-\frac{p_{1}}{p} Q, \quad \dot{p}_{2}=-\frac{y}{r} U^{\prime}-\frac{p_{2}}{p} Q, \quad \dot{x}=p_{1}, \quad \dot{y}=p_{2} \tag{3.1}\\
& p=\sqrt{p_{1}^{2}+p_{2}^{2}}, \quad r=\sqrt{x^{2}+y^{2}}
\end{align*}
$$

where $Q=Q(p)$ is the friction force, $U=U(r)>0$ is the potential energy, and $U^{\prime}>0$ where $r>0$.
The origin of coordinates of the phase space is a global attractor [3]. We will assume that $V_{0}=T(v)+U(r)$. In accordance with Section 1, we calculate

$$
\begin{aligned}
& \dot{V}_{0}=-Q(p) p \quad\left(\dot{V}_{0} \leqslant 0\right) \\
& f_{1}^{0}=-\frac{x}{r} U^{\prime}, f_{2}^{0}=-\frac{y}{r} U^{\prime}, f_{3}^{0}=0, f_{4}^{0}=0 \\
& \Phi_{1}=\frac{x}{r} U^{\prime} p_{1}, \quad \Phi_{2}=\frac{y}{r} U^{\prime} p_{2} \\
& V_{*}=\frac{\lambda}{r} U^{\prime}\left(x p_{1}+y p_{2}\right) \\
& \dot{V}_{*}=-\lambda\left(U^{\prime}\right)^{2}+\lambda\left[\frac{1}{r^{2}}\left(\frac{y_{2}}{r} U^{\prime}+x^{2} U^{\prime \prime}\right) p_{1}^{2}+2 p_{1} p_{2} \frac{x y}{r^{2}}\left(U^{\prime \prime}-\frac{1}{r} U^{\prime}\right)+\right. \\
& \left.+\frac{1}{r^{2}}\left(\frac{x^{2}}{r} U^{\prime}+y^{2} U^{\prime \prime}\right) p_{2}^{2}-\frac{Q}{p r}\left(x p_{1}+y p_{2}\right) U^{\prime}\right]
\end{aligned}
$$

In particular, when

$$
U(r)=g r^{k}, \quad k \geqslant 2, \quad g>0 ; \quad Q=\mu p, \quad \mu>0
$$

we obtain

$$
\begin{aligned}
& V=V_{0}+V_{*}=1 / 2\left(p_{1}^{2}+p_{2}^{2}\right)+g r^{k}+\lambda k g r^{k-2}\left(x p_{1}+y p_{2}\right) \\
& \dot{V}=-\mu\left(p_{1}^{2}+p_{2}^{2}\right)-\lambda k^{2}(k-1)^{2} r^{2 k-4}+ \\
& +\lambda g k r^{k-4}\left[\left(y^{2}+x^{2}(k-1)\right) p_{1}^{2}+2(k-2) x y p_{1} p_{2}+\right. \\
& \left.+\left(x^{2}+y^{2}(k-1)\right) p_{2}^{2}-\mu r^{2}\left(x p_{1}+y p_{2}\right)\right] \\
& \lambda_{*}=c_{2} / \max \left|g k r^{k-2}\left(x p_{1}+y p_{2}\right)\right|
\end{aligned}
$$

Taking into account that

$$
\begin{aligned}
& g r^{k} \leqslant c_{1} ; \quad\left|x p_{1}+y p_{2}\right| \leqslant r \max \left|p_{1}+p_{2}\right| \\
& p_{1}^{2}+p_{2}^{2} \leqslant 2 c_{1} ;\left|p_{1}+p_{2}\right| \leqslant \sqrt{2\left(p_{1}^{2}+p_{2}^{2}\right)} \leqslant 2 \sqrt{c_{1}}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\lambda_{*} \geqslant c_{2} /\left(2 g^{1 / k} k c_{1}^{-1 / k+3 / 2}\right) \tag{3.2}
\end{equation*}
$$

We will determine the set M_{ε}, i.e. find ε for which

$$
-\lambda_{*}^{-1} \dot{V}_{*} \geqslant 0, \quad \text { if } \quad\left|p_{1}\right|<\varepsilon,\left|p_{2}\right|<\varepsilon
$$

Since

$$
1 / 2\left(p_{1}^{2}+p_{2}^{2}\right)+g r^{k} \geq c_{2}
$$

then

$$
r \geqslant\left(\left(c_{2}-\varepsilon^{2}\right) / g\right)^{1 / k},\left(\varepsilon^{2}<c_{2}\right)
$$

and

$$
\begin{align*}
& -\lambda_{*}^{-1} \dot{V}_{*} \geqslant k^{2}(k-1)^{2} g^{4 / k-2}\left(c_{2}-\varepsilon^{2}\right)^{2-4 / k}- \\
& -2 k g^{2 / k} c_{1}^{1-2 / k}\left(k-1+(k-2) \frac{c_{1}}{g}\right) \varepsilon^{2}-\sqrt{2} \mu g^{1 / k} k c_{1}^{1-1 / k} \varepsilon \geqslant 0 \tag{3.3}
\end{align*}
$$

Let ε_{1} be the positive solution of the equation that is closest to zero, corresponding to the latter inequality. Then

$$
-\dot{V}_{*} \geqslant \lambda_{*} \alpha(\varepsilon)>0
$$

where $\alpha(\varepsilon)$ denotes the left-hand side of inequality (3.3) when $\varepsilon=\Theta_{1} \varepsilon_{1}$ and $0<\Theta_{1}<1$, and λ. is the right-hand side of inequality (3.2).

We will now estimate λ for which $\dot{V}_{0}+\dot{V}_{*}<0$ in the region $G_{12} M_{\varepsilon}$. In the given region $\left(\varepsilon<\left|p_{1}\right|<\sqrt{c_{1}} ; \varepsilon<\right.$ $\left|p_{2}\right|<\sqrt{c_{1}}$)

$$
\begin{aligned}
& \dot{V}_{*}=2 \lambda k g^{1 / k} c_{1}^{2-2 / k}\left[2(k-1) g^{1 / k}+\mu c_{1}^{-1 / 2+1 / k}\right] \\
& \dot{V}_{0}<-\mu\left(p_{1}^{2}+p_{2}^{2}\right) \leqslant-2 \mu \varepsilon^{2}
\end{aligned}
$$

In order for the sum of the left-hand sides of the latter inequalities to be negative, it is sufficient to satisfy the following inequality

$$
\lambda \leqslant \lambda_{* *}=\mu \varepsilon^{2} /\left\{k g^{1 / k} c_{1}^{2-2 k}\left[2(k-1) g^{1 / k}+\mu c_{1}^{1 / k-1 / 2}\right]\right\}
$$

Assuming that

$$
\lambda_{1}=\Theta_{2} \lambda_{* *} \leqslant \lambda_{*}, \quad 0<\Theta_{2}<1
$$

we obtain

$$
\dot{V} \leqslant-\min \left(2 \mu \varepsilon^{2}\left(1-\Theta_{2}\right), \lambda_{1} \alpha\right)
$$

Remark. If, for the given dynamical system, two Lyapunov functions are known, differing in that their derivatives vanish on different manifolds, then, by combining these functions, it is possible to obtain a new function with a negative-definite derivative. For example, for the equation

$$
\ddot{x}+\varphi(x) \dot{x}+f(x)=0, \quad \varphi(x)>0, \quad x f(x)>0, \quad x \neq 0
$$

the Liénard replacement [4]

$$
y=\dot{x}+\Phi(x) . \quad \Phi(x)=\int_{0}^{x} \varphi(x) d x
$$

leads to the system

$$
\dot{x}=y-\Phi(x) ; \quad \dot{y}=-f(x)
$$

with Lyapunov function and its derivative

$$
\begin{aligned}
& V_{1}=y^{2}+2 F(x), \quad F(x)=\int_{0}^{x} f(x) d x \\
& \dot{V}_{1}=-2 f(x) \Phi(x)
\end{aligned}
$$

which vanishes when $x=0$. However, it is also possible to consider the equivalent system

$$
\dot{x}=z, \quad \dot{z}=-\varphi(x) z-f(x)
$$

with Lyapunov function

$$
V_{2}=z^{2}+2 F(x)
$$

and its derivative

$$
\dot{V}_{2}=-2 \varphi(x) z^{2}
$$

After reduction to the variables $x, y(z=y-\Phi(x))$, we obtain

$$
\begin{aligned}
& V=V_{1}+V_{2}=y^{2}+4 F(x)+(y-\Phi(x))^{2} \\
& \dot{V}=-2 f(x) \Phi(x)-2 \varphi(x)(y-\Phi(x))^{2}
\end{aligned}
$$

REFERENCES

1. BLINOV, A. P., The problem of constructing a Lyapunov's function. Prikl. Mat. Mekh., 1985, 49, 5, 724-729.
2. BLINOV, A. P., Estimating the time of motion of certain dynamical systems. Prikl. Mat. Mekh., 1998, 62, 5, 888-892.
3. ROUCHE, N., HABETS, P. and LALOY, M., Stability Theory by Lyapunov's Direct Method. Springer, New York, 1977.
4. BARBASHIN, Ye. A. and TABUYEVA, V. A., Dynamic Systems with a Cylindrical Phase Space. Nauka, Moscow, 1969.
