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Developing results obtained earlier (1,2], a method of changing Lyapunov’s function with a negative-sign derivative into a Lyapunov 
function with a negative-definite derivative [l] is applied to natural mechanical systems with dissipation when there are no 
gyroscopic forces. The transition time is estimated. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. CHANGING LYAPUNOV’S FUNCTION FOR ESTIMATING 
THE TRANSITION TIME 

For the system of differential equations of disturbed motion 

Xi =fi(x), XER”. fi(x)~C’(G). i=1,2 ,..., n (1.1) 

with an asymptotically stable equilibrium positionx = 0 E G C R”, for which a positive-definite Lyapunov function 
V,(x) is known in the region G, with a non-positive time derivative by virtue of (l.l), which vanishes on the manifold 
M c G, a new function was constructed in [l] 

V(x) = Vo(x)+ v.(x) 

where 

v?+(x)= i h,@k(X), @k =-“i f;(xm+,,...,x”)dxk 
k=I 0 

fk%,+ I.... .X”)=fk(xp(xm+,‘...,X,)....,X,) 

x,,,+ 1, . . ., x,, are independent variables in terms of which the remaining variables x1, x2, . . ., x,,, on M are expressed 
in a unique and differentiable from: Xj = xy(x,,,+~, . . ., x,); x:(O) = O(j = 1, . . ., m) and hk are certain non-negative 
numbers. 

From a consideration of the time derivative of V, by virtue of system (1.1) 

i: =-~ ~ififi” + E fk ~ )ii~+ 
i=l k=m+l i=l k 

i kkh$ 
i,k=m+l i 

(1.2) 

two cases of the selection of Ai in which the problem of changing Lyapunov’s function is solved were distinguished 

We will dwell on the case when 

fm+,(~)=fm+2(x)=...f,(x)=0 on M (1.3) 

This case arises in mechanical systems with energy dissipation when there are no gyroscopic forces. In fact, the 
equations of motion 

where 
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(L is the Lagrange function, R is the Rayleigh function, uik are the dissipation coefficients, and Ts, aq and U are 
functions of the generalized coordinates ql, . . . . . q,J, after introducing. The Hamilton variables 

Pk =aLIaik (1.4) 

are transformed into 

Taking into account that 

bk = ai.iaq,-aRiaqk 

L = C p;cj; - H 

(1.5) 

where H = T + V is the Hamilton function, Eqs (1.5) can be given a different form 

bk =-aHlaqk-aRl&jk or Ijk =c AiPiPj+Z AikPi+Ak (1.6) 
i.j i 

where A$, A: and Ak are functions of the generalized coordinates, and here Af are linear forms in l.+ These 
equations, together with the equations 

(1.7) 

obtained from expressions (1.4), form a closed system of equations. 
Suppose the state of equilibrium 

41 =...=q,=o. p,=...=p,=o 

is asymptotically stable, G is the region of attraction and Vo = T + V is Lyapunov’s function. Then, expression 
(1.2) for ri, will have the form of the case considered here if x is thought of as a vector with the coordinates 
pi, . . ..Pn.41, ... q,,, and if account is taken of the fact that the manifold A4 is described by the system of equations 
pi = . . . = P,, = 0. Here 

fn+l(X)=~~+z(X)=,..=f2n(X)=0 on M 

In order for ri. to be negative on M\(O), it is sufficient to put h,+i = . . . = hk = 0 for any positive hi, . . . . An. 
We will now consider the more general case (1.3) of system (1.1). Let Giz be the closure of the part of region 

G contained between the surfaces Vo = cl and Vg = ~2, cl >. c2 > 0 and hi = h2 = . . . = h, = A. 
By virtue of the continuity of the functions Vo, Vo, V, and V, in the region G 12, a fairly small number 5, for which 

the sum vc + ri, will be positive in Giz, will be found. In this case it may turn out that the sum [-(ri, + V.)] will also 
be positive in Gi2. Having determined min (- vo - ri.) = u in Gi2, it is possible to give (see, for example, [3]) an 
upper limit of the time of motion of the system in Gi2, i.e. to estimate the transition time. However, if the sum [-(If0 
+ V.)] with the selected h is not positive over the entire region G i2, then a certain neighbourhood of the manifold 
M should exist in which this sum is positive. Then, when h is reduced further, this neighbourhood will expand and, 
at a certain value A = h,, will cover the entire region Gi2, i.e. estimation of the transition time is always possible. 

By varying the values of hi, . . ., A,,, and dividing the region Gi2 into subregions by specifying the numbers c3, c4, 
. . . . ck (c2 < c3 < c4 < . . . < ck < cl), the estimate of the transition time can be improved. 

Along with this estimate, a rougher estimate may be useful. This is based on the inequality (in all cases below, 
the operations min and max are conducted over the region Giz; summation is carried out from k = 1 to k = m) 

min(Vo + V,)= min(Ve - hz@k)acZ-hmaxlC@k(>O 

and on replacing the check of the positiveness of (-V, - ri.) in the region G,2 with the chosen value 

h=x*, A-, =c2/maxIz@kl 

with a check of the positiveness of (-ri,) in the s-neighbourhood of the set M (or, more precisely, in the set 
Me = (x E Gi21d@, M) < s),where E is a small positive number, and d(x, M) is the distance between points x E 
Gi2 and the manifold M) and with a check of the positiveness of (- vo - V, - cc) in GiJ& where ct = min (-v,) 
on ME. 

For a fairly small fixed value of E as h + 0 it follows that C( + 0 and an increase in min (--vo - v, - a) in 
G,2wC to the value B > 0, B = min (-v,,). Therefore, h = A.0 5 h, will be found, for which a = a,, > 0 and the 
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quantity min (- ri, - ri, - cr.,,) will become non-negative. However, the value of cro can be taken as the lower limit 
of the values of (-v. - v,) in the region G12 and used to estimate the transition time. 

2. EXAMPLE: THE MOTION OF A SYSTEM OF 
TWO SERIES-CONNECTED PENDULUMS IN 

A RESISTING MEDIUM 

Assuming that the resistance of the medium is proportional to the velocity of motion of each pendulum, expressions 
were obtained in [4] for the resistance of the medium to the motion of two series-connected pendulums 

R, =u[(m, +m*)I:cb, +m2~,~2cos((92-(PI)(&l 

R2 = u[m&z + m2V2 cos(cp2 - ~PI)+I 1 

where u is a positive constant, and m k, lk and (pk are the mass, length and angle of deviation of the pendulums 
from the vertical (k = 1, 2). 

The equations of motion of the system and its kinetic and potential energy have the form 

Y, =-PYI -w +wll CPI =Yl 

where 

I 
O= 

A = tml +m2)f1 ‘I 
B[A-bcos2(cp2-(P~)1’ m212 

. B=m212. b=- 
12 

kl =(ml +m2)gsincpi, k2 =m2gsincP2 

wl =WCOS(‘PZ -c~i)k, + Bwsin(cp2 -c~~)[bcos(cp~ -CPI)Y? +Yzl 

w2 = bwcos(cp2 -qlPq - Bbsin(cp2 -q)[Ay: +cos(cp2 -cp~)y~l 

and g is the acceleration due to gravity. 
We will take the following as Lyapunov’s function [4]: 

v, = ABbyf + By; +2Bbyly2cos(cp2 -cp,)+2bq kl(xW+2b’f k2(M!x 
0 0 

Its time derivative, by virtue of system (2.1), is 

~o=-2~E(b[A-bcos2~cp2-cp,~l~:+~by,~os~cp2-cp~~~~2l2~~~ 

for y1 + 0 and y2 + 0. Thus, the manifold M is represented by the system of equations 

yt =o, Y2 =o 

and 

/1O = o[-k, + cos(cp2 - ‘pl )k2 I. j2” = wkAk2 + bWcp2 - CPI 14 1 

f; IO, f4” S 0, q = -fPyi I @2 = -f2oY2 

V*=-~(fifi0+f2f20+f3fi0+f4f20) 

(2.2) 

According to (1.8) 

L = c2 1 max I fPyi + f2oy2 I 

where 
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I JOY, +f2oY* I< &[(m, +~2)(1+6)+~2(1+A)lmax(Iy~~y2 I) 

mm (I YI I.1 Y2 I) 6 f 

and 1 is the major semiaxis of the ellipse&y: - y: - Byty2 = cl. 
We will check the positiveness of (-V,) in it4,, assuming E to be a fairly small number. From the expression for 

ri, it can be seen that the sign of I’, in M, may depend only on the choice of E. When E + 0 we havey, + 0 and 
y2 + 0. For a fairly small value E = E., we will have (-v.) 2 a > 0 in M,, and it is possible to determine ao. 

3. THE MOTION OF A PARTICLE IN A CENTRAL FIELD OF FORCES 
TAKING THE RESISTANCE OF THE MEDIUM INTO ACCOUNT 

Consider a particle of unit mass moving in a medium in which the friction depends on the velocity v in the plane 

C&J with a centre of attraction at the point 0. Let T = ~‘12 be the kinetic energy, where u = vm. 
The equations of motion of the particle have the form (the prime denotes a derivative with respect to r) 

(34 

P’&Z r= x +y J”-;-r 
where Q = Q(P) is the friction force, U = U(r) > 0 is the potential energy, and U’ > 0 where r > 0. 

The origin of coordinates of the phase space is a global attractor [3]. We will assume that Va = T(u) + U(r). In 
accordance with Section 1, we calculate 

v, =+u’(xp, +yp2) 

ri, = -k(U’)2 + A. ’ Y2 

[ ( - Tu~+xw)p: +2p,p2L$J+Jj+ 

+~~~u~+y2u~~p~+~xpI+yp2v] 

In particular, when 

U(r) = grk. ka2, g>o; Q=pp, p>O 

we obtain 

v= vo+Vt =J/2(pf +pz)+gr’ +hkgrk-2(xpl +YP2) 

~=-~(pf+p~)-hk2(k-1)2r2k-4+ 

+ hgkrke4[(y2 +x’(k-I))pf +2(k-2hplpz + 

+ (x2 +y2(k-I))pz -Pr2(xp, +YPZ)] 

h, = c2 / rkx I gkrke2 (xpl + YPZ) I 

Taking into account that 

we obtain 
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kh, a c2 l(2g”kkc;“k+Y2) 

We will determine the set ME, i.e. find E for which 

-~;‘ti*so, if IP,lCE, Ip2lC& 

Since 

883 

(3.2) 

then 

and 

-2kg 2’kc;-2’k 
c 

k_l+(k_2)$ E2-~pg”kkc,‘-“k,,o 
1 

(3.3) 

Let &I be the positive solution of the equation that is closest to zero, corresponding to the latter inequality. 
Then 

-9, P A,a(e) > 0 

where a(&) denotes the left-hand side of inequality (3.3) when E = Qtet and 0 < 8, c 1, and )i. is the right-hand 
side of inequality (3.2). 

We will now estimate A for which v0 + v. < 0 in the region G&MC In the given region (E < ]pt] < &; EC 
IPzl< m 

\', = 2Akg 11kC~-2/k~2~~_,)g~/k+CIC;I/2+l/kl 

VO <-p(p:+p;)s -2uEz 

In order for the sum of the left-hand sides of the latter inequalities to be negative, it is sufficient to satisfy the 
following inequality 

h C A.. = ~&*/<kg”kc:-X[2(k - l)g”& + l_t$+“~]) 

Assuming that 

1, =O,k.,* rh,. 0<02 <I 

we obtain 

ti C -min(21.E2(1 -e,), 1,a) 

Remark. If, for the given dynamical system, two Lyapunov functions are known, differing in that their derivatives 
vanish on different manifolds, then, by combining these functions, it is possible to obtain a new function with a 
negative-definite derivative. For example, for the equation 

x+cp(x)x+f(x)=o. cp(X)>O, Xf(X)>O, X#O 

the Lienard replacement [4] 

y=X+aqx). @(x)=j cp(x)a!x 
0 

leads to the system 

x=y-CD(x): j=-f(x) 
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with Lyapunov function and its derivative 

v, =y* +2F(x), F(x)= j f(x)& 
0 

i; = -2f(n)@(x) 

which vanishes whenn = 0. However, it is also possible to consider the equivalent system 

i=t, i=-cp(x)z-f(x) 

with Lyapunov function 

V, =z* +2F(x) 

and its derivative 

i; = -2fp(x)z2 

After reduction to the variables x, y(z = y - O(x)), we obtain 

V=V, +V, =y*+4F(x)+(y-U)(x))* 

ti = -2f(x)@(x) - Z(p(x)(y - O(x)>2 
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